skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Muralidharan, Archish"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. 3D‐printed polymer blends with programmable mechanical and compositional heterogeneity were fabricated using grayscale digital light processing by spatially modulating the intensity of light during printing and swelling the resulting part with a second monomer. A rubbery poly(ethylene glycol) diacrylate functionally graded print is variably swollen with acrylamide monomer as a function of crosslinking density. Following a secondary polymerization, a 3D‐printed functionally graded blend with regions of varying composition and stiffness was formed. A deterministic model for polymer conversion informs printing conditions to correspond with predicted material properties based upon local volume fractions of the two materials. Upon the secondary polymerization, two networks are present within the printed structure including glassy and rubbery regions. The compressive moduli of local regions within prints ranges from 76 to 200 MPa and measured moduli of the structures agree with predicted values acquired using finite element analysis. A lattice structure with prescribed local stiffness printed using grayscale exposures deforms differentially when compressed. Advantageously, local dimensional deformations caused by the removal of the unreacted printing monomer are eliminated due to the introduction of the second polymer. This method provides predictive control over local mechanical properties and high shape precision while maintaining the simplicity of vat photopolymerization. 
    more » « less
  3. Abstract A rapid and facile approach to predictably control integration between two materials with divergent properties is introduced. Programmed integration between photopolymerizable soft and stiff hydrogels is investigated due to their promise in applications such as tissue engineering where heterogeneous properties are often desired. The spatial control afforded by grayscale 3D printing is leveraged to define regions at the interface that permit diffusive transport of a second material in‐filled into the 3D printed part. The printing parameters (i.e., effective exposure dose) for the resin are correlated directly to mesh size to achieve controlled diffusion. Applying this information to grayscale exposures leads to a range of distances over which integration is achieved with high fidelity. A prescribed finite distance of integration between soft and stiff hydrogels leads to a 33% increase in strain to failure under tensile testing and eliminates failure at the interface. The feasibility of this approach is demonstrated in a layer‐by‐layer 3D printed part fabricated by stereolithography, which is subsequently infilled with a soft hydrogel containing osteoblastic cells. In summary, this approach holds promise for applications where integration of multiple materials and living cells is needed by allowing precise control over integration and reducing mechanical failure at contrasting material interfaces. 
    more » « less